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1.	Introduction:	Basic	Mechanical	Behavior	

Slide	196	shows	the	diagram	which	summarizes	the	evolution	of	the	modulus	(Young’s	
modulus	in	this	case)	of	an	amorphous	polymer	as	a	function	of	temperature	and	which	
therefore	reflects	the	behavior	at	small	deformations	below	and	above	the	glass	transition	
(the	 "transition	 zone",	 as	we	have	 already	 seen,	moves	 towards	higher	 temperatures,	 if	we	
increase	the	speed	of	measurement).	

1. At	low	temperatures,	we	can	identify	the	glassy	regime,	where	the	molecules	do	not	
change	 their	 conformation	 during	 small	 deformations.	 By	 applying	 a	 stress	 to	 the	
material,	rather	the	separation	of	molecules	tends	to	increase	and,	hence,	the	enthalpic	
contribution	to	Ecoh.	The	Young's	modulus	is	therefore	quite	close	to	the	compression	
modulus,	 K,	 i.e.	 on	 the	 order	 of	 2	GPa.	 Similar	 values	 are	 also	 found	 in	 glassy	
semicrystalline	polymers	and	also	in	semi-crystalline	polymers	with	a	low	Tg,	provided	
that	the	degree	of	crystallinity	remains	fairly	high.	
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2. By	 increasing	 the	 temperature,	 we	 enter	 the	 transition	 zone,	 where	 the	 modulus	
decreases	substantially.	In	this	regime	the	behavior	becomes	very	sensitive	not	only	to	
the	 temperature	 but	 also	 to	 the	 measurement	 speed.	 We	 speak	 of	 a	 "viscoelastic"	
behavior,	which	we	will	phenomenologically	describe	next	week	(along	with	molecular	
models).	

3. Finally,	we	enter	the	rubbery	state.	Unlike	a	conventional	liquid,	amorphous	polymers	
show	a	more	or	less	extended	temperature	plateau	above	Tg,	depending	on	the	molar	
mass,	where	the	modulus	remains	approximately	constant	at	a	few	MPa	(in	fact,	we	will	
see	that	it	increases	with	T	in	this	regime,	but	this	is	not	seen	on	a	logarithmic	scale	that	
covers	several	orders	of	magnitude).	Thus,	if	the	mass	becomes	very	low,	we	find	the	
behavior	of	a	classical	liquid	and	the	elastic	modulus	tends	towards	zero	immediately	
above	 Tg,	 while	 for	 an	 elastomer	 (crosslinked	 rubbery	 polymer	 with	 an	 effectively	
infinite	mass),	the	modulus	remains	around	1	MPa	until	the	degradation	temperature.	

The	goal	of	this	week's	course	is	to	describe	and	explain	this	"elastomeric"	behavior.	

1.1	Rubber	Elasticity	

The	elasticity	of	glassy	and	semi-crystalline	polymers	depends	essentially	on	Ecoh,	and	generally	
little	on	the	time	scale	of	the	measurement,	whereas,	as	we	will	see	later	(Chapter	4.3),	large	
deformations	are	in	general	permanent	(plasticity	or	rupture).	On	the	other	hand,	rubbers	and	
elastomers	are	materials	 capable	of	 large	elastic	 (reversible)	deformations	 ranging	 to	
several	hundred	percent.	Three	conditions	are	necessary	for	this:	

• Long	and	flexible	chains.	
• Intermolecular	forces	that	are	globally	weak	compared	to	other	forces	that	come	into	

play	during	deformation.	
• Local	anchoring	points	(entanglements,	cross-links).	

The	"rubbery"	elasticity	is	therefore	a	phenomenon	almost	unique	to	organic	polymers	above	
their	Tg.	Polymers	which	show	rubbery	behavior	at	ambient	temperature	are	typically	low	Tg	
flexible	 polymers	 which	 crystallize	 little	 or	 not	 at	 all.	 Often,	 these	 are	 random	 aliphatic	
copolymers,	with	catenary	double	bonds	(dienes	-	cf.	natural	rubber)	or	heteroatomic	chains	
(containing	S,	Si	or	O	in	addition	to	C).	You	may	wonder	whether	a	double	bond	will	increase	
the	stiffness	of	a	polymer	chain,	because	of	the	hindered	rotation.	However,	the	carbons	are	
only	monosubstituted,	and	in	case	of	an	attached	H	atom	or	some	other	small	substituent,	we	
facilitate	the	rotation	of	the	C-C	bonds	on	either	side	of	the	double	bond.	And	the	-Si-	or	-O-	of	a	
heteroatomic	chain	are	even	less	bulky.	

1.2	Elastomers	or	Rubbers?	

By	 definition,	 a	 rubber	 is	 an	 amorphous	 polymer	 in	 the	 rubbery	 state,	 i.e.	 operated	 at	 a	
temperature	 above	 Tg	 within	 the	 rubbery	 plateau.	 An	 elastomer	 is	 a	 lightly	 crosslinked	
("vulcanized")	 polymer	 whose	 use	 temperature	 corresponds	 to	 the	 rubbery	 state.	 We	 will	
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discuss	entanglement,	the	phenomenon	that	gives	rise	to	a	rubbery	plateau	in	non-crosslinked	
polymers	at	another	day.	This	week's	discussion	will	focus	on	elastomers.	

2.	Phenomenology	

2.1	Rubbery	Behavior	

The	compression	modulus	

	 	 	 	 	 	 	 	 	 (1)	

varies	little	with	T,	always	being	on	the	order	of	5	GPa	whether	we	are	below	or	above	Tg	(think	
of	liquid	water	for	example,	which	is	perfectly	liquid,	but	almost	incompressible	–	if	you	don't	
believe	me,	 imagine	 that	 the	 immediate	 impact	at	 the	water	 surface	after	 jumping	 from	the	
Golden	Gate	Bridge	will	 be	 similar	 like	 falling	 onto	 a	 floor	 of	 concrete).	On	 the	 other	hand,	
Young's	modulus,	E,	 decreases	 by	 a	 factor	 of	 1000	 above	Tg.	 That	 implies	 that	 one	needs	 a	
relatively	small	force	to	apply	large	uniaxial	deformations	to	the	material.	As	K	remains	high,	
the	volume	does	not	change	much	under	these	conditions	and	the	material	effectively	becomes	
incompressible,	even	if	K	has	not	changed.	

We	can	express	this	idea	in	terms	of	the	Poisson's	ratio	𝑣	which	is	the	ratio	between	the	relative	
transverse	shrinkage	and	relative	longitudinal	elongation	when	pulled.	The	change	in	volume	
during	lengthening	Dl	is	

	 	 	 	 	 	 	 	 	 (2)	

and	

	 	 	 	 	 	 	 	 	 (3)	

is	 therefore	 close	 to	 0.5	 in	 the	 rubbery	 state,	 because	 K	 >>	 E.	 Rubbery	 polymers	 and	
elastomers	are	often	considered	incompressible.	

2.2	Thermodynamics	of	the	Deformation	of	an	Elastomer	

For	 a	 process	 proceeding	 under	 constant	 pressure,	 where	 volume	 changes	 are	 negligible,	
instead	of	

	 	 	 	 	 	 	 	 	 (4)	

we	can	employ	the	Helmholtz	free	energy	

	 	 	 	 	 	 	 	 	 (5).	
	

𝐾 =
8𝐸!"#
𝑉$

 

ΔV
𝑉$

= (1 − 2𝑣)
Δ𝑙
𝑙$
≡ (1 − 2𝑣)𝜀 

𝑣 =
1
2 11 −

𝐸
3𝐾3 

𝐺 = 𝐻 − 𝑇𝑆 = 𝑈 + 𝑝𝑉 − 𝑇𝑆 

𝐴 = 𝑈 − 𝑇𝑆 



EPFL STI IMX LMOM 
MXG 039, Station 12 
CH-1015 Lausanne 

Dr. Daniel Görl 
daniel.gorl@epfl.ch 
lmom.epfl.ch 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 
Suite de votre unité 
 

 

 

4 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 

If	 the	 length	of	 the	 sample	 changes	by	d𝑙	 during	 the	 application	of	 an	 external	 force	𝑓,	 the	
internal	energy	change	will	be:	

	 	 	 	 	 	 	 	 	 (6),	

	 	 	 	 	 	 	 	 	 (7),	

where	𝑓d𝑙	 is	the	effort	made	by	the	system	against	the	force	𝑓	and	d𝑄	 is	the	change	in	heat.	
From	the	identity	(Equation	8),	it	follows	for	𝑓:	

	 	 	 	 	 	 	 	 	 (8),	

	
	 	 	 	 	 	 	 	 	 (9).	

We	are	looking	for	an	expression	for	the	force,	𝑓,	in	terms	of	quantities	that	we	can	measure,	
and	must	therefore	eliminate	𝑆.	We	therefore	take	the	expressions	we	have	just	obtained,	and	
we	use	the	identity	

	 	 	 	 	 	 	 	 	 (10).	

	 	 	 	 	 	 	 	 	 (11).	

Now	we	can	go	back	to	Equation	9	and	use	Equation	11	to	eliminate	the	entropy	term:	

	
	 	 	 	 	 	 	 	 	 (12).	
	

This	is	the	result	we	were	looking	for:	an	expression	for	𝑓	in	terms	of	𝑙	that	does	not	contain	a	
term	in	𝑆.	What	can	be	done	with	this	result?	

Already	in	1802,	John	Gough	(then	James	Prescott	Joule	later	in	the	1850s)	determined	𝑓	(or	
the	stress)	as	a	function	of	𝑇	for	a	constant	𝑙	(by	changing	the	temperature	of	an	elastomer	at	
constant	strain,	while	measuring	the	force).	Joule	was	able	to	demonstrate	that	for	a	(large)	
constant	deformation:	𝒇 ∝ 𝑻	for	𝑻 > 𝑻𝒈	(Slide	207).	If	we	compare	this	result	with	Equation	
12,	we	 see	 that	 this	 implies	 that	 the	 contribution	 of	 internal	 energy	 to	𝑓	 is	 negligible.	The	
response	 of	 a	 polymer	 to	 a	 force	 in	 the	 rubbery	 state	 is	 therefore	 dominated	 by	 the	
second	term	of	Equation	12,	i.e.	by	the	entropic	contribution.	

As	a	physical	 interpretation	(Slide	208),	we	admit	that	above	Tg,	 the	energetic	barrier	to	
changes	 in	 conformation	 is	 negligible	 and	 therefore	 the	 chains	 can	 be	 stretched	 upon	
deformation	 without	 changing	 Ecoh.	 Chain	 stretching	 changes	 entropy,	 (because	 the	
undeformed	conformations	correspond	to	the	maximum	entropy	of	the	system),	and	therefore	

d𝑈 = d𝑄 − d𝑊 = 𝑇d𝑆 + 𝑓d𝑙 

d𝐴 = d𝑈 − 𝑇d𝑆 − 𝑆d𝑇 = 𝑓d𝑙 − 𝑆d𝑇 
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𝐴.	 If	there	is	a	change	of	𝐴	as	a	function	of	𝑙,	 there	is	a	force,	𝑓.	The	question	now	is	how	to	
calculate	this	force.	

3.	Molecular	Theory	of	Rubber	Elasticity	

3.1	Entropy	of	a	Chain	

We	start	with	the	expression	for	the	probability	that	the	two	ends	of	a	freely	jointed	chain	are	
separated	by	a	distance	𝑟	(Slide	211):	
	
	 	 	 	 	 	 	 	 	 (13).	
	

(𝑛	=	number	of	links,	𝑎	=	length	of	a	link).	

We	then	obtain	an	expression	for	the	probability	𝑊(𝑟)	that	one	end	of	the	chain	is	at	𝑟 = 𝑥⃗, 𝑦⃗, 𝑧,	
if	the	other	end	is	at	(0,0,0)	(Slide	211):	
	
	 	 	 	 	 	 	 	 	 (14).	

	

Then,	we	admit	that	the	number	of	possible	conformations	Ω(𝑟)	for	a	chain	whose	two	ends	
define	𝑟	is	proportional	to	𝑊(𝑟⃗).	Thus,	the	conformational	entropy	of	the	chain	is	

	 	 	 	 	 	 	 	 	 (15).	

	 	 	 	 	 	 	 	 	 (16).	

	 	 	 	 	 	 	 	 	 (17).	

3.2	Effect	of	a	Deformation	

We	will	now	apply	a	deformation	λ	which	has	the	effect	of	transforming	𝑟 = 𝑥⃗, 𝑦⃗, 𝑧	into	𝑟(𝜆) =
𝜆+𝑥⃗, 𝜆*𝑦⃗, 𝜆,𝑧	as	shown	in	the	diagram	on	Slide	213.	The	entropy	change	is	

	 	 	 	 	 	 	 	 	 (18).	

Assuming	 that	 there	 is	no	change	 in	 internal	energy	during	deformation,	 the	change	of	 free	
energy	(Equation	5)	is	Δ𝐴c	=	−𝑇Δ𝑆c	and	hence	

	 	 	 	 	 	 	 	 	 (19).	

∆𝑆! = −
3𝑘(𝑟(𝜆)* − 𝑟*)

2𝑛𝑎* = −
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2𝑛𝑎*  
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Consider	a	network	of	N	 freely	jointed	subchains	per	unit	volume	(equivalent	to	N	crosslink	
points)	with	an	average	of	n	bonds	per	subchain.	The	mean	square	distance	between	the	ends	
of	these	subchains	in	the	absence	of	deformation	is	(as	you	know…):	

	 	 	 	 	 	 	 	 	 (20).	

Since	the	direction	of	𝑟⃗	arbitrary,	

	 	 	 	 	 	 	 	 	 (21).	

So,	 for	 a	 small	 deformation	 of	 an	 elastomer,	 such	 that	 all	 the	 subchains	 follow	 the	
macroscopic	deformation	because	they	are	connected	by	N	crosslinking	points	per	unit	
volume,	

	 	 	 	 	 	 	 	 	 (22).	

The	change	in	free	energy	per	unit	volume	is	thus	

	 	 	 	 	 	 	 	 	 (23).	

Now	consider	a	uniaxial	strain	𝜆+ = 𝜆.	As	our	elastomer	is	incompressible	𝜆+𝜆*𝜆, = 1,	and	

	 	 	 	 	 	 	 	 	 (24).	

So,	

	 	 	 	 	 	 	 	 	 (25).	

If	we	apply	a	change	in	length	𝑙	to	a	unit	volume	of	the	elastomer,	𝜆 = 1 + 𝑙	and	d𝜆 = d𝑙.	So	
(Equation	12),	the	stress,	𝜎,	corresponding	to	d𝑙,	i.e.	force	/	unit	area	

	 	 	 	 	 	 	 	 	 (26).	

Finally,	if	the	strain	is	defined	by	𝜀	=	𝜆	-	1,	within	the	limit	where	𝜀→0	

	 	 	 	 	 	 	 	 	 (27).	

〈𝑅.*〉 = 𝑛𝑎* or         〈𝑥.*〉 + 〈𝑦.*〉 + 〈𝑧.*〉 = 𝑛𝑎* 

〈𝑥.*〉 = 〈𝑦.*〉 = 〈𝑧.*〉 =
𝑛𝑎*

3  

〈∆𝐴!〉 =
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2  
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And	Young's	modulus	is	

	 	 	 	 	 	 	 	 	 (28).	

This	 result	 is	 quite	 astonishing!	 The	 elasticity	 of	 a	 network	 of	 flexible	 chains	 in	 the	
rubbery	state	depends	only	on	the	crosslinking	density,	N,	and	the	temperature!	(Note	
that	this	result	does	not	depend	on	C∞	because	all	terms	in	na2	cancel	out).	We	also	notice	that	
Equations	26	and	28	are	consistent	with	Equation	12:	The	stiffness	of	an	elastomer	increases	
with	temperature.	

Finally,	the	shear	modulus	G	for	an	incompressible	material	is	simply	𝑮 = 𝑬/𝟑 = 𝟑𝑵𝒌𝑻.	
 
Obviously,	our	approach	is	a	bit	simplistic.	For	example:	

a)	 We	 consider	 that	 each	 sub-chain	 constituting	 the	 network	 changes	 conformation	
independently	from	other	chains,	implying	that	it	can	intersect	its	neighbors	as	if	they	weren't	
there	(we	speak	of	a	"phantom	network").	

b)	The	distribution	of	Equation	13	suggests	that	P(r)	remains	finite	for	r	>	na,	which	does	not	
make	sense.	This	expression	remains	a	good	approximation	at	small	strains,	but	Equation	28	is	
no	longer	valid	when		

	 	 	 	 	 	 	 	 	 (29).	

c)	The	crystallization,	which	can	take	place	at	large	deformations	in	natural	rubber,	is	ignored.	

d)	For	excessively	high	crosslinking	densities,	N,	the	number	of	bonds	per	subchains	becomes	
small	and	the	freely	jointed	chain	model	is	no	longer	valid.	

Nevertheless,	 this	 approach	 works	 well	 enough	 for	 small	 strains	 and	 low	 degrees	 of	
crosslinking,	and	the	difficulty	b)	can	be	solved	by	using	more	realistic	distributions	such	as	
“Langevin”	distribution,	which	tends	towards	zero	for	r	=	na.	In	this	case,	E	suddenly	increases	
towards	large	deformations,	because	one	begins	to	draw	directly	on	the	C-C	connections	
once	all	chains	are	extended	(Slide	218).	

3.3	Empirical	Approaches	

While	Equations	26	 and	28	are	 remarkably	 realistic,	an	engineer	often	needs	even	more	
precise	expressions,	 like	the	empirical	Mooney-Rivlin	expression.	Here	we	assume	that	
the	strain	energy	is	a	scalar	quantity	and	therefore	independent	of	the	choice	of	a	reference	(a	
coordinate	 system)	 that	we	used	 to	 express	 a	 deformation.	 It	 is	 therefore	 a	 function	of	 the	
“invariants”	of	the	deformation:	

	

	 	 	 	 	 	 	 	 	 (30).	

𝐸 =
𝜀
𝜎 = 3𝑁𝑘𝑇 

 
 

𝐼+ = 𝜆+* + 𝜆** + 𝜆,* 

𝐼* = 𝜆+*𝜆** + 𝜆**𝜆,* + 𝜆,*𝜆+* 

𝐼, = 𝜆+*𝜆**𝜆,* 

 

𝜆 →
𝑛𝑎
√𝑛𝑎

= 𝑛/
+
* 
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If	we	admit	that	an	elastomer	is	incompressible,	𝜆+𝜆*𝜆, = 1,	and	

	

	 	 	 	 	 	 	 	 	 (31)	

	

Thus,	assuming	that	Δ𝐴	=	0	in	the	absence	of	deformation,	or	if	𝜆+ = 𝜆* = 𝜆, = 1∶	

	 	 	 	 	 	 	 	 	 (32)	

	 	 	 	 	 	 	 	 	 (33)	

Thus,	for	a	uniaxial	tension,	𝜆+ = 𝜆,	and	

	 	 	 	 	 	 	 	 	 (34)	

We	 thus	 find	 Equation	 26	 (assuming	 that	 𝐶10	 =	 0.5	𝑁𝑘𝑇)	 plus	 other	 terms	 with	 arbitrary	
constants,	which	can	be	adjusted	as	desired,	to	better	simulate	the	real	behavior.	

4.	Summary	

•	 Elastomers	 are	 materials	 capable	 of	 undergoing	 very	 large	 reversible	 deformations:	 this	
phenomenon	is	at	present	limited	to	lightly	cross-linked	flexible	polymers	above	Tg.	

•	 Thermodynamic	 analysis	 reveals	 a	 dominant	 entropic	 contribution	 to	 the	 stress-strain	
behavior	of	elastomers.	

•	The	 forces	opposing	deformation	arise	 from	the	reduced	number	of	conformational	states	
available	to	a	stretched	chain	(equivalent	to	a	decrease	in	entropy	and	hence	an	increase	in	free	
energy).	

𝐼+ = 𝜆+* + 𝜆** + 𝜆,* 

𝐼* = 𝜆+/* + 𝜆*/* + 𝜆,/* 

𝐼, = 1 

 

∆𝐴 = w 𝐶0.(𝐼+ − 3)0(𝐼* − 3). = 𝐶+$(𝐼, − 3) + 𝐶$+(𝐼* − 3) +⋯
1

0,.3$

 

 

𝜎 =
𝑑∆𝐴
𝑑𝜆 =

𝑑
𝑑𝜆
(𝐶+$(𝜆+* + 𝜆** + 𝜆,* − 3) + 𝐶$+(𝜆+/* + 𝜆*/* + 𝜆,/* − 3) +⋯) 

𝜎 = 2𝐶+$(𝜆 − 𝜆/*) + 2𝐶$+(1 − 𝜆/,) + ⋯ 


